Implicit Regularization in Variational Bayesian Matrix Factorization

نویسندگان

  • Shinichi Nakajima
  • Masashi Sugiyama
چکیده

Matrix factorization into the product of lowrank matrices induces non-identifiability, i.e., the mapping between the target matrix and factorized matrices is not one-to-one. In this paper, we theoretically investigate the influence of non-identifiability on Bayesian matrix factorization. More specifically, we show that a variational Bayesian method involves regularization effect even when the prior is non-informative, which is intrinsically different from the maximum a posteriori approach. We also extend our analysis to empirical Bayes scenarios where hyperparameters are also learned from data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Variational Bayesian Matrix Factorization with Side Information

Bayesian matrix factorization (BMF) is a popular method for collaborative prediction, because of its robustness to overfitting as well as of being free from cross-validation for fine tuning of regularization parameters. In practice, however, due to its cubic time complexity with respect to the rank of factor matrices, existing variational inference algorithms for BMF are not well suited to web-...

متن کامل

Nonnegative matrix factorisations as probabilistic inference in composite models

We develop an interpretation of nonnegative matrix factorization (NMF) methods based on Euclidean distance, Kullback-Leibler and Itakura-Saito divergences in a probabilistic framework. We describe how these factorizations are implicit in a well-defined statistical model of superimposed components, either Gaussian or Poisson distributed, and are equivalent to maximum likelihood estimation of eit...

متن کامل

Bayesian Singing-Voice Separation

This paper presents a Bayesian nonnegative matrix factorization (NMF) approach to extract singing voice from background music accompaniment. Using this approach, the likelihood function based on NMF is represented by a Poisson distribution and the NMF parameters, consisting of basis and weight matrices, are characterized by the exponential priors. A variational Bayesian expectationmaximization ...

متن کامل

Theoretical Analysis of Bayesian Matrix Factorization

Recently, variational Bayesian (VB) techniques have been applied to probabilistic matrix factorization and shown to perform very well in experiments. In this paper, we theoretically elucidate properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the positive-part Jam...

متن کامل

Implicit Regularization in Matrix Factorization

We study implicit regularization when optimizing an underdetermined quadratic objective over a matrix X with gradient descent on a factorization of X . We conjecture and provide empirical and theoretical evidence that with small enough step sizes and initialization close enough to the origin, gradient descent on a full dimensional factorization converges to the minimum nuclear norm solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010